Metode Substitusi
Menggantikan satu variable dengan variable dari persamaan yang lain
contoh : Carilah penyelesaian sistem persamaan x + 2y = 8 dan 2x – y = 6
jawab : Kita ambil persamaan pertama yang akan disubstitusikan yaitu x + 2y = 8
Kemudian persamaan tersebut kita ubah menjadi x = 8 – 2y,
Kemudian persamaan yang diubah tersebut disubstitusikan ke persamaan
2x – y = 6 menjadi : 2 (8 – 2y) – y = 6 ; (x persamaan kedua menjadi x = 8 – 2y)
16 – 4y – y = 6
16 – 5y = 6
-5y = 6 – 16
-5y = -10
5y = 10
y = 2
masukkan nilai y=2 ke dalam salah satu persamaan :
x + 2y = 8
x + 2. 2. = 8
x + 4 = 8
x = 8 – 4
x = 4
Jadi penyelesaian sistem persamaan tersebut adalah x = 4 dan y = 2.
Himpunan penyelesaiannya : HP = {4, 2}
Metode Eliminasi
Dengan cara menghilangkan salaj satu variable x atau y.
contoh :
Selesaikan soal di atas dengan cara eliminasi:
Jawab ;
x + 2y = 8
2x – y = 6
(i) mengeliminasi variable x
x + 2y = 8 | x 2 | –> 2x + 4y = 16
2x – y = 6 | x 1 | –> 2x - y = 6
5y = 10
y = 2
masukkan nilai y = 2 ke dalam suatu persamaan
x + 2 y = 8
x + 2. 2 = 8
x + 4 = 8
x = 8 – 4
x = 4
HP = {4, 2}
(ii) mengeliminasi variable y
x + 2y = 8 | x 1 | –> x + 2y = 8
2x – y = 6 | x 2 | –> 4x – 2y = 12
5x = 20
x = 4
masukkan nilai x = 4 ke dalam suatu persamaan
x + 2 y = 8
4 + 2y = 8
2y = 8 – 4
2y = 4
y = 2
4 = 2
HP = {4, 2}
No comments:
Post a Comment